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THE PERMIAN SUPERBASIN

Thick Permian rocks identified in 1910s; major
Permian oil fields found, 1920s on

Deeper folded and faulted (ARM) structures were

identified, and large Ellenburger-Devonian oil fields
found, 1940s on

Mixed bag of basinal sediments (carbonate —
siltstone — mudstone) developed, 1950s on

Modern technology applied 2000s on causing new
highs in production and activity.



KEY QUESTIONS

WHY IS THIS A SUPERBASIN?

Why so many / so much organic-rich source?
— How are the pre-Penn sources preserved?

— Why do we get persistent basin environments in
Penn-Perm?

How does Penn-Wolfcamp structuring affect
oil generation and migration?

Why do we get such widespread oil-window
conditions?
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PROTEROZOIC HISTORY
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PECOS MAFIC COMPLEX
AT THE CORE OF THE PERMIAN BASIN
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FOUNDATION -
CAMBRIAN
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TEXAS GEOHISTORY, TOBOSA PHASE
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LATE PALEOZOIC: ANCESTRAL ROCKY
MOUNTAINS (ARM) OROGEN
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TEXAS GEOHISTORY, ARM PHASE
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GIGASCALE SUBSIDENCE;
THE PERMIAN BASIN PROPER

* Basinwide subsidence begins in Pennsylvanian

— Responsible for minor erosion of uplifts, lack of
basement exposures

— Drowns the Strawn platform, creates persistent basins

e Subsidence outlasts deformation into late
Permian
— Thick (2-3 km), complex sedimentary package
— finally sealed by Late Permian salt

— Causes maturation of Devonian-Penn shales and
charging of reservoirs
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TEXAS GEOHISTORY, PERMIAN PHASE
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FT. STOCKTON UPLIFT AND
PECOS INTRUSIVE COMPLEX
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OIL AND GAS WINDOWS

 Today, most all of Midland Basin and shallower
Delaware Basin are in the oil window in major
source rocks; deep and western Delaware Basin
are in the gas window.

 Without Permian subsidence, probably only the
deep Delaware Basin would be in oil window!

* Permian Basin subsidence also enhanced the
deep, silled marine basins that let organic matter
accumulate to form Penn-Perm source rocks.
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g-o Dry Gas
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Courtesy: Amoco

Jarvie etal 2017: S&D 10949

4
MATURITY, DEVONIAN "5

MATURITY AND
PRODUCTION
IN WEST TEXAS
BASINS

Devonian is in the oil or
wet gas window over most
of the Permian Basin, with
dry gas in the deeper
Delaware Basin

This maturity over a broad
area is due to the broad
Permian Basin subsidence
after ARM tectonics.

(Jarvie et al., 2017)



PETROLEUM SYSTEMS, WEST TEXAS
BASINS

WEST TEXAS BASIN BEND FORT WORTH BASIN
Delaware --- Midland ARCH

Central Basin oil reservoirs

Big structures and overlying platform Atoka (Bend)
gas reservoirs

r/salt and gypsur' _______ ?’i\ Cleiaceous pover

\7(_ ” : : — Penn-Perm oil reservoirs
-5f-Permian oil reservoirs--- oil migrating from Midland Basin

‘Penn-Perm Penn-Perm e e o
e in oil window
P, C = :
Yo ey / v Barnett thrusts
9 Barnett in gas window
and Simpson

in oil window

and Simpson

in gas window 'Barnett
is overmature

1) Four source zones; three low in pile (Simpson, Woodford, Barnett)
2) Maturation due to Permian subsidence for most of basin
3) Late salt seal reduces leakage; Permo-Triassic generation products preserved

Ewing, 2016
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ABSTRACT

The West Texas (Permian) Basin is a complexly structured intracratonic basin with prolific oil and natural gas
production from conventional reservoirs and from thick, prolific organic mudrocks.

The basin has two phases of subsidence; a lesser phase in Ordovician-Devonian time (‘Tobosa basin'), and the
main phase in Pennsylvanian and Permian time (the 'Permian basin' proper).

It is built on diverse Proterozoic crustal units, including a ca. 1120 Ma layered mafic complex that may be
related to basin origins. The crust was fractured during Cambrian rifting of the southern margin of North
America; the pattern of this fracturing in the deep Delaware Basin is obscure but may have governed late
Paleozoic fault patterns.

Faulting and folding occurred in the Pennsylvanian to early Permian, as part of the Ancestral Rocky
Mountains (ARM) orogen.

- In the Basin, the ARM contains a variety of small to medium basement-cored uplifts, folds, thrust faults and two trends of strike-slip faults

— The overall pattern of folds and faults is consistent with SW-NE compression.

- This SW-NE compressive stress could not have originated from the northwestward convergence of the Ouachita-Marathon thrust belt southeast
of the ARM, but may have originated either from the Pacific (by flat subduction) or from strong continental collision in the Appalachian Orogen.

- Lines of weakness generated during the Proterozoic and/or Cambrian concentrated stress and created the complex structures.

The West Texas branch of the ARM is buried by over 2.5 km of post-deformational Permian strata -- the

Permian Basin.
Subsidence began during ARM deformation, then increased in rate and continued to the end of the Permian.

— Permian subsidence resulted in the maintenance of the deep marine Midland and Delaware basins that were not filled in until Late Permian time.

— These basins were only connected to the world ocean by narrow and relatively shallow straits. The subsiding basins were poorly oxygenated, and
thus were able to accumulate great thicknesses of organic mudstone and other basinal sediment.

— Despite Mesozoic basin-margin modifications to the east, south and southwest, the Permian subsidence shows a bowl-shaped pattern centered
on the Central Basin axis of uplift.

- This axis is the site of the Pecos mafic complex, which was subjected to compression in Pennsylvanian time. Sinking of a mafic crust or its
subjacent lithosphere, begun during compression, may have been a driving force for Permian subsidence.

The Permian subsidence was responsible for putting source rocks into the oil window in the Midland and
northern Delaware basins. Further maturation to gas occurred within the deep basins generated by ARM
deformation and Marathon thrust loading.



REFERENCES

Ewing, T.E., 1991, The tectonic framework of Texas; text to accompany the Tectonic Map: Bureau of
Economic Geology, 36p.

Ewing, T.E., 2010, Phanerozoic development of the Llano uplift: Contributions to South Texas
Geology 2010: South Texas Geological Society, p. 567-578.

Ewing, T.E., 2016, Texas Through Time: Lone Star geology, landscapes and resources. Austin, Bureau
of Economic Geology Udden Series 6, 431p.

Ewing, T.E., 2019 in press, Tectonics of the West Texas (Permian) Basin — origins, structural geology,
subsidence and later modification: in Anatomy of a Late Paleozoic basin: Permian Basin, USA (S.C.
Ruppel, ed.): AAPG Memoir 124 and BEG RI 285

Ewing, T.E., M.A. Barnes, and R.E. Denison, 2019 in press, Proterozoic foundations of the Permian
Basin, west Texas and southeastern New Mexico — a review; in Anatomy of a Late Paleozoic basin:
Permian Basin, USA (S.C. Ruppel, ed.): AAPG Memoir 124 and BEG RI 285

Jarvie, D.M., D. Prose, B.M. Jarvie, R. Drozd, and A. Maende, 2017, Conventional and
unconventional petroleum systems of the Delaware Basin: Search and Discovery Article 10949.
McKee, E.D. and S.S. Oriel, 1967, Paleotectonic investigations of the Permian system in the United
States: USGS Professional Paper 515, 271p.

Muehlberger, W.R., A.R. Moustafa, and P.R. Tauvers, 1996, Tectonic Map of North America: AAPG, 4
sheets, scale 1:5,000,000.

Yang, K-M. and S.L. Dorobek, 1995, The Permian Basin of West Texas and New Mexico: tectonic
history of a ‘composite’ foreland basin and its effects on stratigraphic development: SEPM Special
Publication 52, p. 149-174.



POSSIBLE CAMBRIAN FAULT TRENDS
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SCALE OF FEATURES AND DEPTH TO
CRUSTAL DETACHMENT

IF scale of basement-cored features related to depth
to detachment (i.e., sled-runner)...

Macroscale features imply upper-crust detachments
(<20 km)

Megascale uplifts imply whole-crust involvement

Presence of BOTH scales implies a deep thrust of the
CBA over Delaware, blind except at FSU
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TIMING OF DEFORMATION

Major unconformities pre-Strawn (Early Penn), mid-
Wolfcamp (Early Permian)

Most structures in central basin seem to be
Wolfcamp, with prior activity likely

Structures to NE, E, SE show earlier activity and are
not reactivated in Wolfcamp

No useful evidence for varying sigma-1
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Appalachian

- ‘Hard Collision’
' NE-SW stress

(Miss?-Penn)
‘Soft Collision’

s emem =]
3

- Flat subduction;
i ..\ -.-..Arc suppressed.

B Traction in red area

.oty 3 MODELS FOR ARM

DEFORMATION

A) Far-field stress from
Alpinotype collision in
Appalachians; rotated to SW

B) Flat subduction of proto-
Pacific plate to SW,
analogous to Laramide
basement-cored uplifts and
basins

C) Recently proposed:
transpression on SW margin
leading to intraplate
deformation
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2D VIEW: CALCULATE TECTONIC
SUBSIDENCE

TECTONIC SUBSIDENCE —

Subsidence from 1D chart,
corrected for the isostatic response
to sediment loading;

attempts to show times and
places where active tectonic
processes are causing subsidence.

VaI Verde Kerr

D) LOCATION VAP
for subsidence curves and section\s
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ARM VS OUACHITA OROGEN

200 mi )}

Pedernal

93]
>
Bend

N N

Eort

Ouachita convergence
to NW-NNW
Generates narrow
foredeep basins
(Arkoma, Ft Worth,
Val Verde?)
Incompatible with
ARM compression



